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•k BSTRA CT

Recent experiences in utilizing the global optimization

methodology, based on polynomial and lleurai nct_,rk

_echniques. lor l]uid machinery design are summarized. Global

optimization melhods can utilize tile inlbrmation cullectcd fi'om

_arious sources and by different tools. These methods olTcr

multi-criterion optimization, handle the existence _I lnuttiple

design points and tradc-ofl_; via insight into the entire design

'_pacc. can easily perform tasks in parallel, and are _Hlen

cfl:cctive in filtering the noise intrinsic to numerical and

experimental dala. Another advanlage i,', Ihat these methods do

_)ot need to calculate the sensiti',it', of each design variable

I_callx lIoxvever, a successful application of lhe global

,)ptimization method needs to address issues related to data

requirements x_ith fin increase in thc number m desien x ariabtes.

md mcthuds lbr predicting the model perlt_rlnancc, l:xamples of

.ipplications. selected from rocket propulsion cL)rnponenls.

inchlding a supersonic turbine and fin injector element, and a
turbulent tlm_ diffuser arc used 1o illuslrale the use(ulness oi'Hle

,._,lobal t)ptiinization method.

1. INTRODUCTION & OVERVIEW

Modern computational and experimental lluid

d_namics tools have matured to a stage where they can provide

-ubstantlal insight into engineering processes inxo!_ing fluid

!h)_>. Ihis can [)el l) analyze the lluid ph 3 sits its _ct! as improxc

H)e design t)l oractical dc,,iccs. In particular. _-apid _nd

continuous development in the technology of fluid machinery

demands that new design concepts be regularly proposed to

meet goals li)r increased pcrlormance, robusmess and sallaty

_hile concurrently decreasing cost. These stringent goals arc

lbrcing consideration of design variables over ranges and in

combinations not typically employed, thereby increasing the

design complcxity. Objective and efficient evalualion of these

new and complex designs can bc [hcilitated by dcve!opment and

ilnplcmcntation of systematic optimization methods. Tu date.

,lae maiority of the effort in design optimization of lluid

dynamics has relied on gradient-based search algorithms (Baysat

and Eleshaky 1992, Lambert et al. 1995, Reuther et al. 1999).

Fhesc methods _ork iteratively through a sequence of local sub-

i_roblems, which approxi_at¢objective and cunstraint Ihnctions
l'_w a sub-region of the design, space, e4., by linearization using

computed sensitivities. Major challenges for these optimization
approaches are the robust and speedy computation of sensitivity.

coefficients (Elbanna and Carlson 1904. Dadone et al. 2000).

Polynomial-Based Re._ponse Surface

Recently we have witnessed increasing interests in

utilizing the global optimization methods, which avoids the need

to compute design sensitivities altogether, In this regard, tile

response surfacc methodology (RSM) has gained attention

because nfinimurn effort is required for soft_varc interfacing.

t_hich facilitates the integration _H"analysis and design codes.

RSM is particularly suitable Ibr subsystem approximation within

multidiseiplinary design optimization ISobieszczanski-Sobieski
and llalika 1997) because it can utilize information collected

from various sources find by different tools. It can also offer

muhi-critcrion optimization, handle Ihe existence of inultiple

design selections and related trade-oflg, and address tile noises

intrinsic to numerical and experimental data. A main advantage of

RSM lies in its robustness and intelligibility. Robustness and the

Slnootlmess of the approximations in noisy environments are

achieved by pertbrming extra analyses compared to the number

,H regression coefficients. Fhis is a distinct advantage over

derivative-based search algorithms, which may encounter

difficulties in lhe presence of spurious h)cal optima. This

generality allows the consideration of intbrmation at varying

levels of breadth (i.e.. number of design xariablesl and depth (i.e..

details of the design spacel, lhc signil]cancc of the individual

design parameters can also bc assessed directly' by Ihe global

model. Anuther feature favoring RSM is its suitability for parallel

computation.

Fhe polynomial-based response surfaces are commonly
employed in global optimization. An n"' order polynomial in each

dependent variable is generated by standard least-squares

regression (Myers ,'rod Montgomery: 1995). Polynomial

coetfieients are obtained from a linear r%m'ession scheme. In

addition to polynomials, neural netx_orks INN) can also be used

to construct a response surtlace model. With a polynomial

approach, there is a cost associated with RSXI. The coinputational

demands grow fast with increasing number ot design variables,

which is termed as the "curse ofdimensionality". For example, to

construct a second-order polynomial of A' design variables, the

j)umber of coefl]cicnts to be fixed arc (\-I)(.V+2)/(2.9. A cubic
mod,51 will require (N+I)(N+2)tN+3) J.9 coefficients. In



addition,thepredictivecapabilityofRSMisgreatlyinfluenced
bythedistributionof thesamplingpointsin tiledesignspace
(Unaleta[.1997,1998).

Statisticaltechniquesarealsoawtilableibridentif_,ing
polynomialcoefficientsthatarenotwellcharacterizedbythe
data.Forexample,astepwiseregressionprocedurebasedont-
statisticsis oftenusedto discardtermsandimprovethe
predictionaccuracy.Thet-statistic,or t-ratio,of a particular
coefficientisgivenbythevalueofthecoefficientdividedbythe
standarderrorofthecoefficient.The quality of lit of different

surfaces can be evaluated by comparing the adjusted root mean

square error. ,%. defined as:

(1)

llere e, is the error at ia' point of the training data. n is tl_e

numbcr of training data points and J_/, is the number t)l"

coefficients [he measure of error 2-i_cn by G, is normalized tu

_ccount lbr 111,: degrees ol lieedom in file Model. [-htls (3",

:recounts for the nominal el+feet of higher order terms provkting a

l_cttcr overall comparison among the different surlace tits.
The accuracy of the models in rcprcscming the design

<pace is limher gauged by comparing the values oI-Ihe ,a[_jective

function at test design points, different from those uscd to

generate the I]t. with the empirical solution, lhe nmt mean

-quare error. _ lbr the tcst set is gixcn b_:

d/ .'"
(T = _,,

ti1

_2_

in lhi,; CqllaltOll ,% i> Ihc error :it Illc g" icbt point .tlltl m i,: |11c

:_}[al nulnbcr ollcst poinlb.

Ix picall',, the entire desi,,n data are di_ idcd into lx_o

jroups, fhe major porlion, called the traininu set. i., used to fix

the global modct, and the minor portmn, called lhe test set. is
'_sed to lest the I]dclilx of the model, tn short, the variation

between the response stu'tace (RS) azld the training data. as

given by Eq.(I), is normally used to .judge the performance of

iiae tit. As indicated in l-_q. t21. additional test data can be

cmnlo3ed 1o evaluate the perlbrmance ol-dill"trent pnl._namials

,, cr desiL'n paint'; not used durintz the training ph'ase

_:: ']tlld d\llannc-; dl'lpJJcdl.ion:,, ihc !9,>,\I if:.|> i-con

q'_plicd to a :_,ro_ ing nurnber of cases, including high speed ch il

T.ransport IKnill ct al. 1999), airlbil shape optimization (Rat and

\ladavan 1(198. 2000. Madavan et al. 1999). diffuser shape

,Mtimization (Madscn ct al. 2000i. preliminary design {q'

-;upersonic turbine, (Papila et al. 2000). and injectors (Sh,,y et al

1999, Tucker et al. 1998).

Data Selection ht Des(gn Space
In order to reduce tile size of Ih¢ data needed Ior

construetm_ 1tl,2 global model, it is important to zMply a sound

<rategy h_r ,clecting design points (ltallka et at. 19981. t-his

strategy is reli:rred to as the design of experiments. For example,

ihcc centered composite design (I:CCD) is a popular approach

:,_r sclectine tl_c training data to aid the cnnstruction of a

'.-csponse suriace model. "In 'a three-dilnensional space. FCCD

.creates a design space comp,6sed of eight corners of the cube.

one at the center of each of the six faces and one at the center of

the cube. Therefore, this yields (2'v+2N+ I) points, where N is the

number of design variables. Due to this scaling rule, FCCD is

more effective when the number of design variables is modest,

say, no larger than 5 or 6, but not a good choice for problems with

large number of design variables.

The orthogonal array (OA) is a fractional factorial

matrix that assures a balanced comparison of levels of any factor

or interaction of factors. Because the points are not necessarily at

vertices, the analytical tools can be more robust using the

orthogonal array. The OA can significantly reduce the number of

data requircd to construct a global model. To further reduce the

data size, one can choose to rank the different point selections

according to D-optimality criterion. This approach minimizes the
generalized variance of the estimates, and can reduce the

sensitivity of the response surface with respect to noise. In Papila

et al, (2000). alternative representations of the design space are

perlbrmed lor supersonic rocket turbine design by using FCCD

coupled with the D-Optimal treatment and OA. FCCD produces

""-data Ibr file single-stage turbine x_ith six design variables.

With 11 design variables for the two-stage turbine design. FCCD

:,ields 2.071-data. For three-stage turbine having 15 design

,, ariables, FCCD generates 32.799-data based on the (o,'mula of

>_-,-"_V+ t, demonstrating the "curse q/'dimensionality ". For such

cases methods like OA can be applied to reduce the number of

data in an ctlicicnt way.

To enhance the elt"ectheness of the RSM, as

demonstrated by' Papila ct al. 120()ll). :l mulfi-lcvel approach is

,or', useful. ()ne can constrtlcI a global resnonse surface and

dcntiI}, region_,, expected to bc nf li_orable perlbrmance. Then.

_ii these selected regions, one can reline the glohal model Lind

idcntil\ the nptimal design points \_1tll _,ubstantially higher
;!ccurac\.

\ettrttt .Vetworl, s

.ks alrcad)mentioned. NN lcchniques have also been

used to generate surrogate inodels representing data obtained

liona sinlulations based Oll complex numerical and experimental

,;themes. Relevant papers by Carpenter & Barthelemy (1993l.
N ikolaidis et al. (I998). Grecnman and Roth (1998), Madavan ct

al. (1998), Rai and Madavan (1998. 2000). Shyy et al. (1999),

Papila et al. (1999) and Vaidyanathan cl aft. (2000) inchlde

comparative studies of polynomials and neural net_orks lbr data

h-mdling. NN is highly I]cxible in limctional Iorm and hence can

Mi_.'r -i2nil]eiillt polCllliLtl I(H" C(Illlt'_JCX ;tlnclion-, Ihal canlloI b,2

.:acquatcb :lpproxinlatcd bx I_()l,,nontiaJs. NN can be efli:ctitcly

u:,ed in two \',ays. First. it can be used in con.junction with RSM.

For example, in complex regions of file ,;urlace. NN can be

_raincd using the existing data and then can be used to generate

additional data thereby enhancing the available information in

that particular area. Shy5' et al. (1999) have demonstrated that this

approach can help improve the tidelity of the polynomial-based

rcsponse surface model. Alternatively, NN can generate data that

can be directly used by the optimizer \Villa either a polynomial-

based response surt'ace method or a neural network method, the

design optimization is conducted b\ tirs! constructing a gMbal

representation of the design space, followed b) a search tbr

optimal designs.

While back-propagation neural networks (BPNN) have

been larget 3 cmplo.xcd in reported sttlclies for NN-based design

optimization, the radial-basis neural networks (RBNN) have



advantagesthatdeservetobeinvestigatedmoreclosely.RBNN

are multi-layer netv,orks with hidden layers of radial basis
transfer fimction and a linear output layer. The training of tile

network is a cyclic process and the weights and biases of the

nodes of the network are adjusted until an accurate mapping is

obtained. RBNN may require more neurons than BPNN, but

they can be designed faster than the latter. Various parameters

need to be evaluated to design an RBNN. For example, a spread

constant is needed as a design parameter; i.e., the radius of the

basis in the input space to which each neuron responds. One can

design a network with zero error on the training vectors by

generating as rnany radial basis neurons ill the ncmork as there

are inpt, t vectors. A more compact design in terms of network

size is obtained by generating one neuron at a time to minimize

tile number of neurons required. At each cycle/epoch, a neuron

is added to the network until a user specified error goal is

achieved or until the netv, ork has generated tile maximum

number of neurons possible. In such a case, an error goal and

tile spread constant need to be specified. fhe test data helps to

c`,aluate the 'accuracy el the netx`,orks _ith `,ar}irlg spread

constants. Fhus. the lest data are part of the evaluation process

and help in selecting the best NN. lhe NN tcchnNue c:m

encounter problems due to the nature of the data. as x_cll as the

construction of tile neuron characteristics. If the training datasct

is noisy, and the network is trained _,.ithout proper filtering

features, f:.llsc optima due to over-fitting _ill uccur. False

optnna can also be introduced when inadequate training data set

+:-,u,.ed.

I_1this paper+ v,e summarize our recent experiences ilt

ulflizina tile global optimization methodology related to

poi?nonlial-hased R%M and NN. then. we highlight three

ph3sical exatnples: a supersonic turbine and an miector cletnent

tbr rocket propulsion applications, and shape optimization of a

Iurbulent 11o`,`,diffuser, lo reach a successful optimal desien.

_+ne olicn needs It, consider the issues related to (i) .,,election of

appropriate representation el the design space lbr cunstructing

tile global model. <ii) cmplo.vment of the statistical and testing

tools to assess appropriate global models. (iii)multi-criterion

,q-mlmzation. ¢iv) existence of multiple design selectitms and
related trade-elIf+ and (`,) consideration of noises intrinsic tu

numerical and experimental data. There is no space to address

,dl these matters in this paper, but detailed inlbrmation can be
Ibund in tile rel_rences cited.

2. PtlYSIC _1+ AI'PI.IC.kTIONS

Objective Functions

\Vhen attempting to {_ptillllZe l;XO or illore different

,d_iccti_ c lunctions, ct)nllicts between Illenl arise because oi-!!1C

different relationships they have with the design wlriables. 1o

solve this problem, a multi-objective approach is uften

employed. I lere, competing objective functions are condensed to

a single function by generating a composite objective function.

l-he maximization of the composite function effectively

nptimizes the indi_,idual lunctions. the use oft response surlhce

!?pc el ,.z,lobal model makes it straightlbr_vard to do such a

multi-criterion optimization. Without response surtaces, it `,`,ould

have been a highly challenging task.

To handle such a multi-criterion optimization task, an

:tvera,.ze of some l_}l'lll iS normall', used to represent the

composite function. [:or d._,hrn_le, lot tile injector, the goal is to

maximize the energy release'efficiency, l-RE _',hile minimizing

the chamber ,,vail heat flux, Q. Shy3,' ¢t al. (1999) and Tucker et al

(1999) used a geometric mean to combine these two objectives
and maximized the resulting composite objective function, D.

,,,,'here the normalized function such as ERE, takes the form:

d/J+J" k, B-,4 ) (4)

where B is the target value and A is tile lowest acceptable value.

Figure 1 illustrates the roles ors and t in the desirability function

Ibr the case of maximizing a response. The desirabilities with

s<<l imply that a product need not be close to the response

target value, B, to be quite acceptable, l lowever, a large value ors

implies that the product is nearly tmacceptablc unless the

response is close to/3.

Fhe other way of expressing tile composite function is

',o use a weighted sum of the objective fl.mction. The composite

desirability I_.mction can then bc expressed a_,

D = +*,Z + (z:J; +.. (5)

where D is the composite ob, icctivc I'tinctior_ and/_" are the non-

normalized ut_jective functions, lhe .,'s are dimensional

parameters that control the inlpormnce of each ob.iective function.

In the case el" tile supersonic lurbine a _`,ei,,hted suna of the t\xo

,bjccti_es. tile cfliciency', 1l. and the weight. W. has been used.

lhe expression, in tile context of tile turbine gh es the incremental

.:due o f tile pa`, load, J/)_O'. x`,ilh the change in //and i1. The goal

_s to illaxtnlJze +Jpu.l'. _hicla ill turn result> in nmximizing 11 :.lnd

minimizing II and hence the I+a3hmd is maximized.

D = .dl)m' = c.,/1-11,,]xlOO-(ll'-l[_,j

,a here l1 = the calculated eflicicncy

t£ = the baseline efficiency

I1"= calculated weight

It'+ = tile baseline v+eight

c-, = tile amount of payload increment capacit.', Ibr an,,

cli]cienc\ gZlln

I'hc baseline et'tqcicncx and p,cJ_ht are obtained with

the existing design knowledge _ithout i_encfiting from an

uptimization strategy. file goal of the opmnization is to identify

turbine configurations capable of delivering higher payload.

Turbulent Flow Diffuser

Figure 2 highlights tile use of a response surface

approximation R_r the optimum shape of a two-dimensional

diffuser. Tile goal `,`,as to accomplish maximum pressure recovery

by optimizing tile ,,vail contours, lhe ilm_ is incompressible and

ihlly turbulent with a Reynolds number ot10 ', based on the inlet

throat halt-width, D. The overall geometry is defined by the ratio

,_l'inlet and outlet areas, and tile diffilscr Icneth to height ratio, In

-this stud), the length to height ratio is fixed at 3.0, and the area

ratio at 2.0. The shape of tile difft, scr wall is designed fur



optimumperlbrmance,withfivedesignvariablesrepresentedby
B-splines.The CFD model is based on the liill Reynolds-

averaged Navier-Stokes equations, with the k-t: two-equation
turbulence model in closure Ibrm. At the inlet of the flow

domain, a uniform flow distribution is specified. Detailed

discussion of this study can be found in Madsen et al. (2000), As

illustrated in Fig. I, within the tidelity of the analysis tool, there

are often multiple design points that meet the design objectives.
It is interesting to note that different diffilser shapes are found to

yield essentially the same pertbrmance. The response surthce

model is ideally suitable for such situations.

Supersonic Turbine

Next. we summarize our recent eflbrts in optimizing
the preliminary design of a supersonic turbine suitable for a

_'eusable launching vehicle (RLV) propulsion system Single-,

two- and three-stage turbines are considered _iih the number of

design variables increasing in accordance with the number of

',rages. Ihere are 2 t3pes of design variables:

( ;t'om(,lr[c Jllplll

• mean diameter (/)/

• last rotor annulus area 1..I,,,)

• blade height ratio between thc t _' \',ille and the last n_tor
blade

• vane and blade axial chords

]_t_JOl'lllOllC'_' I "lll'lIl/}[('._

• i?l'lf

'_ Htinl[_cr t)[ sl;Jge5

• blade row reaction

• ',_rl< split (if more than Istage is inxesligated)

tn the work presented b) l_apiia ctal. t;0!)(iL there 'arc

t). I I. mid 15 design xariablcs 10r lhc single-, txto- Lllid [hi'cc-

,rage turbines, respectively. In addimm. Ihcre :Ire 2 -.lruclural

,:onstraints. the blade centrifugal stress and thc disk >tress. lhe
hl'ld¢ centrifuoat stress was constrained by a limit placed on them

product o1 the blade exit annulus area and the ,'?ptlcg..l\':, Ihc

disk stress was constrained by a limit placed on the pitchline
• elocitx (Ihe product of the RP31 and the mean radius). \11 the

design variables in'_olved in the design nrocess are normalized

i_\ fi/eir respective baseline values.

for r,_ckct engine ,q_plicatmns. ::aximi×ine chc

cmclc pa._load lot a given turbine upct'ating condilion is the

tdtimate objective..\ny gain hi turbine cllqcicncv will hc

,cllectcd m a redticed propellant Coltsunlptlon. [htlS al_ increase

in payload. 1lmvever, higher turbine I_crlbrmance usually entails

multistage designs. _qfich are heavier. To ascertain rcquired

predictive capability of tim RSM, a two-level domain refinement

approach has been adopted in the course of optimization (Papila

el al. 2000). First. a response surlace was constructed lbr the

-nt_re design space. Since the accurac', of the response surlhcc
',\as less than satislhctorv, a domain relinemcnt was Ihen

:&_pted based on the initial optimization.

,kn inspection of the optimal designs indicates that the

two-stage turbine gives the best payload performance lbr this

:lpplication..,ks the number of tile stage increases, xve see that

efficiency improves x_ltil,;:dlc,x_cight increases also. :\ccordiug
m the lbrmula for dpav. the 'improv,maent in elticienc;' from

two- to three-stage cannot compensate the penalty from higher

weight. As shown in Figure 3, the mean diameter, speed, and the

exit blade area exhibit distinct trends. Specifically, the diameter

decreases, speed increases, and annulus area decreases with

increasing number of stages. It is interesting to observe that none

of the selected values of the design parameters are toward the

limiting values assigned, indicating that the optimal designs result

from compromises between competing parametric trends. For

such cases, a tbrmal optimizer such as the present response
surface method is very useful. The results indicate that the

efficiency rises quickly from single stage to two stages but the

increase is much less pronounced with three stages. A single-

stage turbine performs poorly under the engine balance boundary

condition possibly due to a signil]cant portion of fluid kinetic

energy being lost at the turbine discharge of the single-stage

design due to high stage pressure ratio and the high-energy of the

working tluid, which is predominantly h',drogen. Figure 4

summarizes litting/training and testing results of RBNN and

polynomial-based approximations lbr Anay of a 2-stage turbine.

The training data are .,elected based <m the orthugonal arra3

approach. There are It design variables. 249 training data (OA).

and 78 testing data in both _riginal and relined design spaces•

('entered on the _ptinml design point predicted using the

inlbrmation gathered lbr the entire design space, the reduced

design space has 20% of the range originally assigned lo each

design variable. In all plots, a periled lit _itl result in a 45-degree
line.

lhc cl]cctiverless of Ihc muhi-lctcl RSM approach can
he obsc,_cd iil this ligure by comparing tile original and ret]ned

,lesign space plots. \Vhilc RBNN is tq-,x iouslv more accurate for

ihe traiuing data due to more number m adjustable parameters

:lssocialcd _ith the number of neurons, iis predicting capabilib.

'.s rellected ill the tcslin,.z data plots, mnx not be as superior.
%cxcrthelcss. I{BNN is :lttractKe !_ecause it has the Ilexibilitx to

handle complex characteristics of a response _;urlb.ce dnd is

qraightlbr't_ard to train because Ihe computcition is based on the

!incar regression analysis.

Swirl Coo.vial Injector Element

Ihe injector considered i_,, t;.n the combustor of an

advanced liquid rocket engine. Different injector concepts have

been proposed lbr this purpose, including shear coaxial t',pe.

impinging type. and swirl type (Shyy ct al. 1999. Tucker et al.
199o). lhe -_itl coaxial clelllelll !xls been used some_hat

-paringl', m, thc t,,,S•,\.. :'ut lift:,, heel1 v_hlelv tiscd hi Russia

!,ecatlse Of [15 reported abilitx to pellorm welt mcr a large throttle

,ange ((ii!I and Nurick 1976) l:i_urc "_ ,4hows Ihat l[le GO,...

Ilox_ing in the center post oflhc element, exits from the element

',tilh both radial and axial velocity components, l'his effect is

achieved by' introducing the GO_, tangentially into the center post

through small slots. The empirical design methodology of

Calhoon et al. (1973) uses the oxidizer pressure drop. AP,,. fuel

pressure drop..JP,, combustor length. L,,,,,h, and the full cone

swirl angle. (-). as independent _ariabtes. Due to stabilit 3

considerations li:,r tiffs inicctor design, the AP,, range is set to 10-

20% of the chamber pressure, _ hilt the _1I'¢ range is set to 2-20%

of chamber pressure. The combustor length, defined as the

distance from the injector to the end of the barrel portion of the

chamber ranges frolll 2-8 hlches. Ihc (till core sxxii'l angle is

":_Iowed to xary Iiom 30-90 °. The dependent variables modeled

;ire /:.RE {energy release efl]cicncv, a measure of element



perlbrmance),wallheatflux,Q.. injector heat flux. Q,,;, relative

eombustor weight. ,%<;, and relative injector cost. C,,q.

With the multi-criterion optimization, one can assess

the effect of certain aspects of the design during the optimization

process. The set of results shown in Table I thcilitate the

illustration. The baseline results in Table I are obtained by

placing equal weight for all design variables. Alternatively, in

Case I, we place more emphasis on reducing the wall and

injector face heat fluxes. Desirability' functions [br both of these

variables are given increased weights (5 and 10. respectively).

Since lower heat fluxes tend to increase component life,

weighting these two variables is equivalent to emphasizing a

life-type issue in the design. Since Q+, is already at its minimum

value, it remains fixed. As expected. O is decreased which

decreases the value ofQj, u by almost 35%. The lower value ore

also produces a lower ERE. Both propellant pressure drops and

the combustor length are increased to mitigate tile drop in ERE.

The increases in L,,,,n and AP/cause an increase m It;,.i and (5,.,-

respectively. The emphasis on lil_ extracts the expected penalt',

on performance...\dditionall',, for the current model, there are

also slight weight and cost penalties.

Ibe results for Case 2 are obtained b\ emphasizing

maxmltzatmn el ERE and minimization of ll_,.] _ith dcsirabilitx

_elghtings of 1(} and 5. rcspcctively. Increased \_cighting for

_hcsc two '_ariables is equivalent to emphasizing a thrust to

_vcight goal for the injector/chamber. The relative chamber

length is shortened to slightly' lower II;,+ ERE is maximized by

illcr¢:tsltlg the (}(), sv.,il'] angle b', a Iilcttn t)l :lhnt)st 2.5 and

increasing .JP, b3 over 35 %. The _alue of l.?RF, increases h\

n,.cr eric pelCCllt. .ks llotcd earlier, itlcrcasin_ ¢-) tczids to

increased ini¢cttq" heat flux. For this case, emphasis on thrust

:rod _etght IcildS It) Ila_,e an adxerse all-oct ml (.),,r i_,clauve cost.

. :or the current model, is also incrc:tscd signil]cantl+_. I"igure
h oIT_'rs a ','iStltl[ ilhlstration of the trends exhibited in xarious

,ccnar_os betx_een a sx,,irl t3pe and an impinging type injector.

While the qualitative I;.:aturcs bet,,,,een the D,\O itljCCtt;l'S are

consistent, the present optimization model alh>_s the inspcctinn

,fl the parametric ",ariations directl',.

3. CONCLUSIONS

The global optimization method can be particularly

cfFacti_e x,+ith either a polynomial-based response surface or a

qcural network _hcn mlormation Ii'om different computational,

)\DClllllenI;l[ Alld 3naixtica[ .',olllcc', liter.Is Io b,2 ;.issclnt)lcd. ]i_

_i1-, ?,l[3cr. D.C >l.Hl-llllarize our ICCCllt c\perlCllCCS ill tltiiizillg tile

,q_lll1117ation nlettlodology for optindzing tasks rchitcd tv lie
pl-Cli1111nar) design of a supersonic hirbinc, the design of :ill

mice\or elenlent, dlld the shape Ol_timization of a turbulent llo_x

diffuser. A successful optimal design often needs to address the

issues related to the selection el +appropriate training data lbr

constructing the global model, employment of the statistical and

testing tools to identify appropriate global models, multi-

criterion optimization, existence of multiple design select\ms
md related tradc-offs, and consideration of noises intrinsic to

_qlmer_cal aud experimental data.
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Table I i.ll;:ct t Icmpha_tzing lilc and pcll_rllt:lllce issues on optimal iniectnr design.
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Constraints
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Dependent Variable

ERE
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Baselm Variable
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onThrust to llI"e(eht

10
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